49 research outputs found

    Consistency and fluctuations for stochastic gradient Langevin dynamics 

    Get PDF
    Applying standard Markov chain Monte Carlo (MCMC) algorithms to large data sets is computationally expensive. Both the calculation of the acceptance probability and the creation of informed proposals usually require an iteration through the whole data set. The recently proposed stochastic gradient Langevin dynamics (SGLD) method circumvents this problem by generating proposals which are only based on a subset of the data, by skipping the accept-reject step and by using decreasing step-sizes sequence (δm)m≥0. We provide in this article a rigorous mathematical framework for analysing this algorithm. We prove that, under verifiable assumptions, the algorithm is consistent, satisfies a central limit theorem (CLT) and its asymptotic bias-variance decomposition can be characterized by an explicit functional of the step-sizes sequence (δm)m≥0. We leverage this analysis to give practical recommendations for the notoriously difficult tuning of this algorithm: it is asymptotically optimal to use a step-size sequence of the type δm = m-1/3, leading to an algorithm whose mean squared error (MSE) decreases at rate O(m-1/3)

    On the efficiency of pseudo-marginal random walk Metropolis algorithms

    Get PDF
    We examine the behaviour of the pseudo-marginal random walk Metropolis algorithm, where evaluations of the target density for the accept/reject probability are estimated rather than computed precisely. Under relatively general conditions on the target distribution, we obtain limiting formulae for the acceptance rate and for the expected squared jump distance, as the dimension of the target approaches infinity, under the assumption that the noise in the estimate of the log-target is additive and is independent of the position. For targets with independent and identically distributed components, we also obtain a limiting diffusion for the first component. We then consider the overall efficiency of the algorithm, in terms of both speed of mixing and computational time. Assuming the additive noise is Gaussian and is inversely proportional to the number of unbiased estimates that are used, we prove that the algorithm is optimally efficient when the variance of the noise is approximately 3.3 and the acceptance rate is approximately 7.0%. We also find that the optimal scaling is insensitive to the noise and that the optimal variance of the noise is insensitive to the scaling. The theory is illustrated with a simulation study using the particle random walk Metropolis

    Manifold Markov chain Monte Carlo methods for Bayesian inference in a wide class of diffusion models

    Get PDF
    Bayesian inference for nonlinear diffusions, observed at discrete times, is a challenging task that has prompted the development of a number of algorithms, mainly within the computational statistics community. We propose a new direction, and accompanying methodology, borrowing ideas from statistical physics and computational chemistry, for inferring the posterior distribution of latent diffusion paths and model parameters, given observations of the process. Joint configurations of the underlying process noise and of parameters, mapping onto diffusion paths consistent with observations, form an implicitly defined manifold. Then, by making use of a constrained Hamiltonian Monte Carlo algorithm on the embedded manifold, we are able to perform computationally efficient inference for an extensive class of discretely observed diffusion models. Critically, in contrast with other approaches proposed in the literature, our methodology is highly automated, requiring minimal user intervention and applying alike in a range of settings, including: elliptic or hypo-elliptic systems; observations with or without noise; linear or non-linear observation operators. Exploiting Markovianity, we propose a variant of the method with complexity that scales linearly in the resolution of path discretisation and the number of observation times.Comment: Updated with additional numerical experiments and improvements to methodology. 50 pages, 6 figure
    corecore